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ABSTRACT 

Recent progress in the development of highly efficient coherent 
optical sources is reviewed. This work has focussed on nonlinear 
frequency conversion of the highly coherent output of the Non-Planar Ring 
laser Oscillators developed earlier in the program, and includes high 
efficiency second harmonic generation and the operation of optical 
parametric oscillators for wavelength diversity and tunability. 
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This final report for NASA Grant NAG 1-182 will describe the progress we have 

made in the development of highly efficient coherent sources since the last formal report. 

The thrust of our work in the High Energy Efficient Laser Sources program has moved 

over the years from high energy laser systems for LIDAR applications to the development 

of highly efficient diode-laser-pumped solid-state lasers and non-linear optics using these 

lower power cw sources. This program which began in June 1981 has continued to 

address specific NASA requirements for laser sources. We describe our recent progress in 

high efficiency, wavelength diverse coherent sources, including second harmonic 

generation experiments, a variety of optical paramefric oscillator systems, and further laser 

development. 

The specific topics which we have chosen to investigate form a coordinated 

research program directed to satisfy aspects of laser source requirements for remote sensing 

applications. Our early research in this program in the area of flashlamp pumped slab 

lasers has become a basis for the development of high average power diode-laser-array- 

pumped slabs. Diode pumping offers the potential of high average power operation with 

good efficiency and long term reliability. Semiconductor-diode-laser pumping of solid- 

state lasers has been demonstrated in this program to provide the frequency stability and 

coherence required for Doppler LIDAR wind velocity measurements. Our present 

investigation of nonlinear frequency conversion can provide the frequency agility required 

for differential absorption LIDAR measurements of atmospheric water vapor content, 

pressure, temperature and pollutant concentrations. There are also other important 

applications of these methods to a variety of applications including coherent 

e 

e 

communication, fundamental physics, precise timing, ranging, and inertial guidance. 
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Our current nonlinear frequency conversion investigations are being performed at 

low power levels but are scalable to the required higher levels, Even with 53 milliwatts of 

cw 1064-nm laser output, we were able to achieve 56% conversion to second harmonic at 

532 nm. We are demonstrating similar levels of conversion in tunable optical parametric 

oscillation. These recent advances have been made possible by improvements in pump 

laser technology and the quality of nonlinear optical materials. The nonlinear conversion 

techniques will be scalable to high average power just as the highly coherent miniature 

diode-pumped lasers were scaled by injection seeding of high power oscillators or by 

amplification. High average power nonlinear frequency conversion of neodymium laser 

radiation can be competitive with titanium-doped-sapphire and Alexandrite lasers, and with 

further development the nonlinear frequency conversion techniques could offer significant 

advantages. 

11. Review of Recent Progress 

A. Harmonic conversion 

Our result of November 1987 of 56% conversion efficiency of a 53 mW cw single- 

axial mode diode-pumped Nd:YAG laser was reported at SPIE's 0-E Lase conferencel, 

the Conference on Lasers and Electro-Optics (CLEO '88) 2 and in the IEEE Journal of 

Quantum Electronics3. The generation of 30 mW of frequency stable cw light at 532 nm 

has attracted a great deal of attention, and two companies have announced development 

C.D. Nabors, WJ. Kozlovsky, and R.L. Byer, "Efficient second harmonic generation of a diode-pumped 
cw NdYAG laser using and externally resonant cavity," paper 898-18, SPIE 0-E Lase '88, Los Angeles, 
January 11-12,1988; also published in Proc. SPIE 898, Miniature Optics and Lasers pp. 105-109 
(June, 1988). 

WJ. Kozlovsky, C.D. Nabors, and RL.  Byer, "52% Efficient Second Harmonic Generation of a cw 
Diode-Pumped Laser Using a Monolithic External Ring Cavity," paper FE1, 1988 Conference on Lasers 
and Electro-Optics, Anaheim California, April 1988. 

W.J. Kozlovsky, C.D. Nabors, and R.L. Byer, "Efficient second harmonic gcncration of a diodc-laser- 
pumped cw Nd:YAG laser using monolithic MgO:LINb03 external resonant cavitics," IEEE J .  
Quantum Elec. 24,913 (1988). 
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efforts to productize our technique. Since then, we have worked to use the MgO:LiNb03 

monolithic resonant frequency doublers to produce higher powers for OPO pumping. We 

succeeded in operating and servo-locking the resonant doubler while the laser source was 

driven into deep spiking (see below) to produce peak powers in the green of as much as 

500 mW. In this mode, the resonant doubler was also observed to exhibit parametric 

oscillation at f 1 nm from the 1064-nm laser light. This phenomenon is still under 

investigation. We have also begun investigating the use of stoichiometric LiNbO3 prepared 

by vapor transport equilibration4 as a material for monolithic harmonic generators and 

optical parametric oscillators. 

B. Singly resonant optical parametric oscillator in Mg0:LiNbOs 

A monolithic Mg0:LiNba singly resonant optical parametric oscillator was 

operated in both the standing wave and ring geometries5,697. The OPO was pumped by 

the second harmonic of the amplified single-mode diode-laser-pumped Nd:YAG laser, 

operating at a 3-Hz repetition rate. Pump depletions of greater than 60% were observed 

when pumping four times above the 35-watt threshold, with a corresponding energy 

conversion efficiency of 35%. The pump power was 120 watts at 532 nm in a 500-nsec 

pulse. 

Y. S. Luh, M. M. Fejer, R. L. Byer and R. S. Feigelson , "Stoichiometric LiNbO3 single-crystal fibers 
for nonlinear optical applications," Journal of Crystal Growth 85, pp. 264-269 (1987). 

W. Kozlovsky, E. Gustafson, R. Eckardt and R. L. Byer, "OPO Performance with Long Pulse Length, 
Single Frequency N&YAG Lasers", paper 912-10, Optoelectronics and Laser Applications in 
Science and Engineering (O-ELASE88). Los Angeles, California, January, 1988; also published in 
Roc. SPIE 912, Pulsed Single-Frequency Lasers: Technology and Applications, pp. 50-53 (June, 
1988). 

W. J. Kozlovsky, E. K. Gustafson, R. C. Eckardt and R, L Byer, "An efficient monolithic 
MgO:LiNb03 singly resonant optical parameuic oscillator," to be published, Optics Letters. 

W. J. Kozlovsky, C. D. Nabors, R. C. Eckardt and R. L Bycr, "Monolithic MgO:LiNb03 doubly 
resonant optical parametric oscillator pumped by a frequency -doubled diode-laser-pumped Nd: YAG laser," 
to be published, Optics Letters. 
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The OPO output at the resonant signal tuned with temperature from 834 nm to 958 

nm while the corresponding idler tuned from 1.47 to 1.2 pm. The spectral output varied 

from pulse to pulse, with single frequency operation observed on approximately 20% of 

the pulses. The remaining pulses contained as many as eight axial modes of a total spectral 

width of less than 0.7 cm-1, with a center frequency that was stable to M.2 cm-1. The 

multimode behavior can be attributed to crystal temperature fluctuations and microscopic 

mode competition effects during the build-up period of the oscillator. A similar crystal with 

2% net output coupling is expected to run single axial mode and have a threshold for singly 

resonant cw operation of 3 watts. 

0 
C. Doubly resonant optical parametric oscillator in MgO:LiNb03 

e 

e 

0 

e 

A doubly resonant monolithic optical parametric oscillator was demonstrated. It 

was the fmt OPO ever to be pumped with a diode-pumped solid-state laser as its source. 

The frequency doubled output of a non-planar ring laser driven into spiking was mode 

matched into a monolithic cavity much like those used in the harmonic generation 

experiments. The higher powers were needed as our original OPO design was mis- 

fabricated in the thin-film coating process, producing an OPO threshold of 40 mW cw 

rather than the design point of 5 mW. This OPO operated near degeneracy and was 

temperature tunable from 1.01 to 1.13 pn. Overall energy conversion of the pump light at 

532 nm was 7%. This work has been accepted for publication*. 

The OPO could be tuned by applying an electric field across the crystal, which 

changed the ordinary index of refraction via the electro-optic effect and the effective cavity 

length via the electro-optic and piezo-electric effects. Near degeneracy the OPO tuned 5 nm 

* W. J. Kozlovsky, C. D. Nabors, R. C. Eckardt and R. L Byer, "Monolithic MgO:LiNb03 doubly 
resonant optical parametric oscillator pumped by a frequcncy-doubled diodc-laser-pumped Nd: YAG laser,'' 
to be published, Optics Letters. 
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with approximately 800 volts applied. Away from degeneracy, the OPO operated in a 

single axial mode, but tended to drift from mode to mode as the crystal temperature varied, 

and no active control was used. In October, a new crystal was obtained with improved 

coatings that oscillated under me cw pumping conditions with a threshold of 

approximately 10 mW. This OPO is still under investigation. 

A complete theory of the tuning and mode control properties of monolithic doubly 

resonant Oms is under development, and has been presented at the recent Optical Society 

of America meetin$. This system is also an excellent candidate for the production of 

squeezed states of light, and an effort is being made to observe these states that exhibit 

noise levels below that of the Standard Quantum Limit, or the shot noise. 

D. Non-planar diode-pumped ring lasers 

Theoretical development of non-planar ring oscillators (NPROs) is largely 

complete, and has been presented at the SPIE's O-E Lase conference and submitted to the 

IEEE Journal of Quantum Electronics 10911. Emphasis has been placed on laser designs 

with improved isolation to feedback, low threshold, narrow linewidth, and frequency 

tuning with applied magnetic field. 

Support for experimental work has largely been taken over by Stanford 

UniversityNASA SUNLITE program (grant NAG 1-839). Currently, the linewidths of 

R. C. Eckardt,C. D. Nabors, W. J. Kozlovsky and R. L. Byer, "Simultaneous Elecuo-optical and 
temperature tuning of a doubly resonant optical parametric oscillator," paper TuN4, Annual Meeting of 
the Optical Society of America, Santa Clara, California, Nov., 1988. 

lo A. C. Nilsson, TJ. Kane, and R. L. Byer, "Monolithic nonplanar ring oscillators: resistance to optical 
feedback, paper 912-03, Optoelectronics and Laser Applications in Science and Engineering (0- 
ELASE'SS), Los Angeles. California, January, 1988; also published in Proc. SPIE 912, Pulsed 
Single-Frequency Lasers: Technology and Applications, pp. 13- 18 (June, 1988). 

A. Nilsson, E. Gustafson, and R. L. Bycr, "Eigcnpolarization thcory of monolithic nonplanar ring 
oscillators," submitted to IEEE J. Quantum Electron. 
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two Nd:GGG ring lasers are being measured by frequency locking to an external reference 

cavity and spectrum analyzing the heterodyne beamote between them. This work has 

yielded a linewidth measurement for the improved oscillators of approximately 300 Hz. 

E. Driven relaxation oscillation spiking and noise suppression in diode-pumped ring lasers 

Relaxation oscillation noise in diode pumped solid state lasers is a serious problem 

for many applications such as coherent communications and LIDAR. Relaxation 

oscillations can be exploited, however, by deliberately modulating the diode laser pump at 

the relaxation oscillation frequency to produce spikes in the output power whose peak 

power can be greater than 20 times the cw power at the same average pump power. In the 

doubly resonant OPO experiment described above, higher intensities were needed to bring 

the OPO above threshold, so a 10% modulation was applied to the diode pump to induce 

spiking. 

To eliminate relaxation oscillation noise for cw operation, active electronic feedback 

of the solid-state laser power to the diode laser current was employed to achieve a 25 dB 

suppression of the noise peak at 375 kHz. This result is of considerable practical 

importance, and work continues to improve the noise suppression over a broad band. 

Additionally, a number of effects such as bistability and chaos have been observed for the 

system and are under investigation. 

F. Widely tunable optical parametric oscillator in barium borate 

A visible BaB2O4 optical parametric oscillator pumped by a single-axial-mode 355- 

nm source has been demonstratedl2. This was a collaborative experiment with workers 

from the University of Hannover. The laser pump souce was a Spectra-Physics DCR-3D 

l2 Y. X. Fan, R. C. Eckardt, R. L. Byer, J. Nolting and R. Wallcnstein, "A visible BaB203 optical 
parametric oscillator pumpcd at 355 nm by a singlc-axial-mode pulscd sourcc," to be publishcd, Applicd 
Physics Letters. 
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Q-switched unstable resonator NdYAG system. The laser was injection seeded for single- 

axial-mode operation, and the output light spatially filtered before generating the third 

harmonic, yielding a quasi-Gaussian transverse mode profile. Good coherence and spatial 

mode quality of the pump is needed for narrow band, stable OPO operation. 

An average output power of 140 mW with a signal wave conversion efficiency of 

13% an an idler conversion efficiency of 11% for a total conversion efficiency of 24% has 

been achieved. The observed threshold energy of 2-5 mJ is a factor of 2-3 lower than the 

value calculated, indicating that previous measurements of the nonlinear coefficient may be 

low. The oscillator has been continuously tuned from 412 nm to 2.55 pm, limited by the 

infrared transmission range of the crystal. Through injection seeding we obtained single- 

axial-mode OPO operation with a corresponding OPO linewidth of less than 3 GHz. 

111. Conclusion 

This program has been very fruitful, sponsoring in whole or in part the theses of 

numerous graduate students and leading to a number of publications and 4 patents, 

including the Monolithic Isolated Single-mode End-pumped Ring laser oscillator 

(MISER), the angularly multiplexed Nd:YAG laser amplifier, diode-laser pumped 

Nd:Glass lasers, and highly efficient second harmonic generation in monolithic resonators. 

Continued research is focusing on topics of great interest, concentrating on efficient 

wavelength-diverse coherent sources, and narrow-bandwidth frequency-stable diode- 

pumped solid-state Iasers. The potentia1 to satisfy NASA transmitter requirements for 

remote sensing and communications applications has clearly been demonstrated. Much of 

this research, however, was at a preliminary stage. 

Further fundamental research directed to improved performance of resonant second 

harmonic generation and scaling to higher output powers, development of cw OPOs with 

controllably tuned output, and noise reduction combined with an investigation of squeezed 

states of light will follow. This work is essential to continued source development. 
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We have demonstrated a monoiithic M g O : W  doubly resonant o p t i d  parametric 

oscillator using an all-solid-state pump. The pump laser was a single-axial-& monolithic 

N&YAG nonplanar ring oscillador whose diode-laser pump was modulated at 325 lcHz to 

produce relaxation oscillatioa spikes at 1.06 pm that were kquency doubled in a resonant 

cavity to 532 LUP Pump depletions for the OPO of greater than 60% were observed when 

pumping s i x t h s  above the calculated @mW threshold The OPO output was temperature 

tuned fiwn 1.01 pm to 1.13 pm, producing single axial modc output over much of the range. 

By changing the voltage applied across the OPO, the output wavelength was scanned as 

muchasllnmin310Volts. 
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Monolithic M g O : L W  doubly resonant optical parametric oscillator pumped by a 

hquencydoubled diode-laser-pumped Nd:YAG laser 

W. J. Kozlovsky, C.D. Nabors, R. C. Eckardt, and R. L. Byer 

Edward L. Ginzton Laboratory 
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Stanford, California 94305 

(415) 723-1718 

Optical parametric oscillatm (Om) have several potential advantages over tunable 

lasen in the generation of widely tunable narrowband optical radiation. Laser tuning ranges 

are generally limited by relatively narrow gain bandwidths and fixed gain centers. The gain 

center of an OPO is tuned by changing the crystal birefigencc with tcmperanrrrc or 

propagation angle adjustments, yielding a tuning range limited only by the crystal dispersion 

and transmittance bandwidth. Doubly resonant OPOS, which resonate both signal and idler 

waves, can have very low pump thresholds but require very good spatially and temporally 

cohmnt pumps'. Recent advances in frtquency-stable, single-mode lasers, coupled with 

the development of new nonlinear crystals such as MgO:L.NQ, AgGaSez, and barium 

borate have renewed interest in O m .  In this letter, we report the operation of a monolithic 

ring-cavity M @ m  doubly resonant OPO pumped by the sccond h;amonic of a 

frequen~y-soble, di&-b-p~mpCd NdYAG las~r. 

The srbqca pump b nquircments far pumping doubly resonant OPOs art due 

to the necessity for simultaneous cavity resonanas at both the the signal and idler d s ,  

and that the signal and idler frequencies must sum to exactly equal the pump Enquency *. 
pump frequency fluctuations therefore can cause OPO power output fluctuations and 

frqucncy instablitics. In addition, a single-transverse-modc pump laser is nscessary to 
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couple power efficiently to the signal and idler modes 394 . For these nasons, the E&, 

single-d-modc, frequency-stable output from diode-laser-pumped NdYAG monolithic 

nonplanar ring laser 5 or its second harmonic arc ideal for pumping doubly resonant 

OPOS. 

The shdtanmus resonance condition for the signal and idler is also very sensitive 

to cavity length fluctuations, so that the OPO cavity length stability is very hportant A 

monolithic cavity, fabricated by depositing the OPO mirmrs directly onto the nonlinear 

crystal, provides both excellent cavity stability and the lowest possible OPO cavity losses. 

Figure 1 shows the monolithic M g O : L W  OPO cavity design used for these experiments. 

A ring gcometxy was used since it allows the maximUm efficiency for a doubly resonant 

OPO by preventing back generation of pump radiation from the resonated signal and idler 

and because it reduces feedback into the pump laser. 

Mg0:LNb03,(19 was selected as the OPO nonlinear gain d u m  because of its 

noncritical, temperature tuned phasematching range, useful for monolithic devices, and its 

low losses at 1 pm. Low losses am especially impartant for a doubly resonant OPO, as the 

OFQ threshold is proportional to the product of the signal and idler losses10. To fabricate 

the monolithic OPO cavity, the en& of a 1.25-cmlong crystal w a e  polished to 10-rnm radii 

of curvature. The off-axis ring resonator was f o d  by a polishing a flat total-internal- 

nflection surface towithinO.18 mmof the mirraraxisas shown in figure 1. The confacal 

paramem11 fa the resona~a was 0.433 cm, giving the spot size for the signal wave of 

27 pm at 1.064 prn Elccuodcs were placed on the crystal surfaces perpendicular to the 

2.2--width Y-axis to d e  el-ptic tuning of the cavity resonances and the crystal 

birefringence as described below. 

The mirrors deposited on the OPO cavity had their reflectivity centered at 

degeneracy, 1.064 pm, so that both signal and idler wavelengths would be resonant The 

coatings for the OPO crystal were designed to produce a 5-mW pump thrtshold based on 

3 



_ -  a 

e 

e 

e 

e 

e 

a 

0 

the anticipatd nonlinear gain and cavity losses. The coatings specified consisted of a high 

reflector at 1.064 jun and high transmittance at 532 nm for one curved end (Ml), and a 

99.5% reflector at 1.064 pm for the other curved end as the output coupler (M2). The 

coatings that wcre actually applied to the crystal consisted of a 99.9% nflector at 1.064 pm 

with only a 60% transmission at 532 nm for M1 and a 98.8% reflector for the output 

coupler M2. The measured finesse for the OPO cavity of 360 was in good agreement with 

these coating reflectivities and bulk and surface losses for the cavity of 0.4%. The 

calculated OPO threshold for the coatings applied to the crystal was 40 mW. 

The NdYAG monolithic nonplanar ring laser used for these experiments was 

pumped with a SOo-mW diode laser to produce 65 mW of TEh& outputl2. The laser 

output was frequency doubled using a resonant external cavity frequency doubler of 

M g O : W  with the same monolithic ring design as the OPO, which provided greater 

than 50% conversion efficiency to the second harmonic for cw opcrationa. A Faraday 

rotator isolator was necessary at full cw power to prevent feedback into the laser oscillator 

from the doubler. lhis isolator would Uely be unnecessary for newer nonplanar ring 

designs which are m01t resistant to fetdbackl3. 

The 40 mW calculated threshold for the OPO was higher than the 35 mW cw 

available from the resonantly doubled laser pump. Higher powas wen therefore desired. 

We produced higher peak powas by applying 10% modulation to the diodelaser pump at 

the 325-k.Hz niunaon osdlatbn fr#luency of the N&YAG oscillator, generaring relaxation 

oscillatioa p a h  of26O-mW peak power h m  the NckYAG laser. These laser pulses wen 

sti l l  singbui&amIc and pvidcd the samc 65-mW average pow- as for cw operation. 

The resonant double remained locked onto the laser frequency, producing 230-mW peak 

power pulses at 532 nm at 35-mW average power. These pulses were used to p m p  the 

om. 
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Hi@ pump peak powers wen desired so that the OPO would be far enough above 

threshold that parametric oscillation could build-up fiom noise during the pump pulse. As 

the OPO begins to oscillate, the pump power is converted to signal and idler power, 

depleting the pump. Figurc 2 shows the OPO output pulse and corresponding depleted 

pump pulse in comparison to the undepleted 230 mW peak power pump. The 60% pump 

depletion shown in figure 2 during the OPO pulse indicates the efficiency of the conversion 

to signal and idler power of the pump. Since the 0.5% scatter and absorption losses of the 

OPO cavity arc small in comparison to the 1.2% OPO output coupler, most (70%) of the 

depleted pump light is converted to signal and idler waves. The OPO output power 

averaged 2 5  mW for 35 m W  of average pump power. The energy conversion of pump to 

OPO output was 7%. attributable to the long OPO build-up time resulting in paramemc 

oscillation during only a Jmau firaction t5f the pump pulse duration. If the pump had been 

230 m W  of cw power, the 60% pump depletion would have produced a conversion 

efficiency of 40% to signal and idla power. 

Figure 3 shows the obsaved tuning range of the DR OPO. Oscillation at the signal 

was observed from 1.064 pm to 1.01 pn. with an idler of 1.064 pm to 1.13 pm. Tuning 

of the signal and idler wavelength was possible by changing the crystal temperature or the 

voltage applied aaoss the crystal. This tuning was not continuous, but took place as a 

series of axial d e  hops. Changing the crystal tanptranuc changed the phastmatching 

cmditioa as well as thc cavity length. Changing the voltage m s s  the crystal changed the 

cavity leu@ through the p i a a l &  effect and changed the ordinary index of refraction 

thXOUghdlCCbZWJpC * effax, thercby changing the optical path length and bircfringencc of 

the cavity. Figure 3 shows the tuning range of the OPO for voltage scans of 0 to 800 volts 

at various crystal tempera-. The phasematching c u m  at constant voltage was generated 

by taking the published dispersion equations for congruent L.db03l4 and altering the 

extraordinary index coefficient Al from 4.5820 to 4.55027 to match the observed 107 O C  
e 
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phasematching temperature for doubling 1064 nm radiation. Detailed calculations for the 

tuning of the wavelength as a function of applied voltage and temperature of the monolithic 

cavity axe in good agreement to these observed values and are being prepared for a 

forthcoming publicationls. 

At constant temperature and voltage the OF0 operated in a single signal and idler 

axial mode over much of the tuning range. Operation on two widely separated modes 

(typically 4 nm apart) was observed for voltages that forced OPO oscillation far off the 

phastmaoching PeaL, allowing more than one simultaneous rcsoILance under the 

phasematching gain bandwidth. Close to degeneracy, where the OPO gain bandwidth 

becomes very large, oscillation occurred in many axial modcr. The stringent requirements 

on cavity stability fa a doubly resonant OPO were evidenced during single axial modc 

operation by the mode hopping of the oscillator every few seconds due to oven t c m  

changes or self-heating from nsonatcd signal and idler power. 

Future wock in the ana of monolithic OPOs wil l  include detailed theoretical study of 

their tuning Properties, continuous tuning of frtquency by shultanmus control of voltage 

and pump frequency, extension to nondegencratc OPOs, and possibly singly resonant 

OPOs16. The potential of these devices for the production of squeezed states of light l7 is 

also being investigated. 

The monolithic ring cavity OPO design resulted in the very low cavity losses and 

good CILVity st&iliq tbt impWrant f a  efficient and Sabk &ubly-r#Onant OPO 

opera ti or^ Rmp W stability was achieved by using a single-axial-&e diode-laser- 

pumped madidric MYAG nonplanar ring laser, which was mqUency doubled using a 

resonant external cavity. The diode-lascr pump was modulated at the N&YAG lasa 

relaxation oscillation frequency of 3Z-W to produce 230-mW peaL pow- pulses at 532 

nm. The OPO generated pump depletions of gnatcr than 60% when pumped at six times 

the calculated 40 mW cw thnsho~ci. ?he OPO wavelength was temperam from 1.01 
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pm to 1.13 CM, voltage tuned as much as 11 nm in 310 Volts, and was in a single signal 

and idler axial mode over much of its tuning range. These experiments have demonstrated 

the potential for all-solid-state, highly efficient, frequency-stable, and widely tunable 

oms. 
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Figure l(a). The doubly resonant optical parapetric oscillator (OW) monolithic 

M g O : L W Q  ring cavity. (b) Experimental setup for the OPO showing the diode-laser- 

pumped Nd:YAG laser, extcrnal cavity resonant doubler, and doubly resonant OPO. 

Figure 2. Pump depletion for the OPO and comsponding OPO output at 230 m W  peak 

pump peak power. The solid line represents the undepleted pump pulse shape. 

Figure 3. Observed output wavelengths versus tempaatun far the monolithic 

MgO:LiNb@ OPO. Bars npresent the electric field tuning range of the output wavelength 

observed at constant tcmpmhm. The solid line is the calculated fit at constant voltage. 
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